Tuesdays 10:30 - 11:30 | Fridays 11:30 - 12:30
Showing votes from 2021-05-07 12:30 to 2021-05-11 11:30 | Next meeting is Friday Aug 29th, 11:30 am.
Calculations of the evolution of cosmological perturbations generally involve solution of a large number of coupled differential equations to describe the evolution of the multipole moments of the distribution of photon intensities and polarization. However, this "Boltzmann hierarchy" communicates with the rest of the system of equations for the other perturbation variables only through the photon-intensity quadrupole moment. Here I develop an alternative formulation wherein this photon-intensity quadrupole is obtained via solution of two coupled integral equations -- one for the intensity quadrupole and another for the linear-polarization quadrupole -- rather than the full Boltzmann hierarchy. This alternative method of calculation provides some physical insight and a cross-check for the traditional approach. I describe a simple and efficient iterative numerical solution that converges fairly quickly. I surmise that this may allow current state-of-the-art cosmological-perturbation codes to be accelerated.
Reports of "cosmology in crisis" are in vogue, but as Mark Twain said, "the report of my death was an exaggeration". We explore what we might actually mean by the standard cosmological model, how tensions - or their apparent resolutions - might arise from too narrow a view, and why looking at the big picture is so essential. This is based on the seminar "All Cosmology, All the Time".
Small-scale inhomogeneities in the baryon density around recombination have been proposed as a solution to the tension between local and global determinations of the Hubble constant. These baryon clumping models make distinct predictions for the cosmic microwave background anisotropy power spectra on small angular scales. We use recent data from the Atacama Cosmology Telescope to test these predictions. No evidence for baryon clumping is found, assuming a range of parameterizations for time-independent baryon density probability distribution functions. The inferred Hubble constant remains in significant tension with the SH0ES measurement.
We discuss how to efficiently and reliably estimate the level of agreement and disagreement on parameter determinations from different experiments, fully taking into account non-Gaussianities in the parameter posteriors. We develop two families of scalable algorithms that allow us to perform this type of calculations in increasing number of dimensions and for different levels of tensions. One family of algorithms rely on kernel density estimates of posterior distributions while the other relies on machine learning modeling of the posterior distribution with normalizing flows. We showcase their effectiveness and accuracy with a set of benchmark examples and find both methods agree with each other and the true tension within $0.5\sigma$ or better. This allows us to study the level of internal agreement between different measurements of the clustering of cosmological structures from the Dark Energy Survey and their agreement with measurements of the Cosmic Microwave Background from the Planck satellite.
With approximately $50$ binary black hole events detected by LIGO/Virgo to date and many more expected in the next few years, gravitational-wave astronomy is shifting from individual-event analyses to population studies aimed at understanding the formation scenarios of these sources. There is strong evidence that the black hole mergers detected so far belong to multiple formation channels. We perform a hierarchical Bayesian analysis on the GWTC-2 catalog using a combination of ab-initio astrophysical formation models (including common envelope, globular clusters, and nuclear star clusters) as well as a realistic population of primordial black holes formed in the early universe. The evidence for a primordial population is decisively favored compared to the null hypothesis and the inferred fraction of primordial black holes in the current data is estimated at $0.27^{+0.28}_{-0.24}$ ($90\%$ credible interval), a figure which is robust against different assumptions on the astrophysical populations. The primordial formation channel can explain events in the upper mass gap such as GW190521, which are in tension with astrophysical formation scenarios. Our results suggest the tantalizing possibility that LIGO/Virgo may have already detected black holes formed after inflation. This conclusion can ultimately be confirmed in the era of third-generation interferometers.