Tuesdays 10:30 - 11:30 | Fridays 11:30 - 12:30
Showing votes from 2021-04-27 11:30 to 2021-04-30 12:30 | Next meeting is Tuesday Sep 9th, 10:30 am.
We develop a new phenomenological model that addresses current tensions between observations of the early and late Universe. Our scenario features: (i) a decaying dark energy fluid, which undergoes a transition at $z \sim 5,000$, to raise today's value of the Hubble parameter -- addressing the $H_0$ tension, and (ii) an ultra-light axion, which starts oscillating at $z\sim 16,000$, to suppress the matter power spectrum -- addressing the $S_8$ tension. Our Markov Chain Monte Carlo analyses show that such a Dark Sector model fits a combination of early time datasets slightly better than the $\Lambda$CDM model, while reducing both the $H_0$ and $S_8$ tensions to $\lesssim 3\sigma$ level. Combined with measurements from cosmic shear surveys, we find that the discrepancy on $S_8$ is reduced to the $1.4\sigma$ level, and the value of $H_0$ is further raised. Adding local supernovae measurements, we find that the $H_0$ and $S_8$ tensions are reduced to the $1.5\sigma$ and $1.1\sigma$ level respectively, with a significant improvement $\Delta\chi^2\simeq -17$ compared to the $\Lambda$CDM model. We discuss a possible particle physics realization of this model, with a dark confining gauge sector and its associated axion, although embedding the full details within microphysics remains an urgent open question. Our scenario will be decisively probed with future CMB surveys.