Tuesdays 10:30 - 11:30 | Fridays 11:30 - 12:30
Showing votes from 2020-09-29 11:30 to 2020-10-02 12:30 | Next meeting is Friday Sep 12th, 11:30 am.
Cosmic Microwave Background (CMB) observations are used to constrain reheating to Standard Model (SM) particles after a period of inflation. As a light spectator field, the SM Higgs boson acquires large field values from its quantum fluctuations during inflation, gives masses to SM particles that vary from one Hubble patch to another, and thereby produces large density fluctuations. We consider both perturbative and resonant decay of the inflaton to SM particles. For the case of perturbative decay from coherent oscillations of the inflaton after high scale inflation, we find strong constraints on the reheat temperature for the inflaton decay into heavy SM particles. For the case of resonant particle production (preheating) to (Higgsed) SM gauge bosons, we find temperature fluctuations larger than observed in the CMB for a range of gauge coupling that includes those found in the SM and conclude that such preheating cannot be the main source of reheating the Universe after inflation.
We study the large-scale anisotropy of the Universe by measuring the dipole in the angular distribution of a flux-limited, all-sky sample of 1.3 million quasars observed by the Wide-field Infrared Survey Explorer (WISE). This sample is derived from the new CatWISE2020 catalog, which contains deep photometric measurements at 3.4 and 4.6 um from the cryogenic, post-cryogenic, and reactivation phases of the WISE mission. While the direction of the dipole in the quasar sky is similar to that of the cosmic microwave background (CMB), its amplitude is over twice as large, rejecting the canonical, exclusively kinematic interpretation of the CMB dipole with a p-value of 10^{-4} (3.9 sigma), the highest significance achieved to date in such studies. Our results are in conflict with the cosmological principle, a foundational assumption of the concordance Lambda$CDM model.
On-shell methods are particularly suited for exploring the scattering of electrically and magnetically charged objects, for which there is no local and Lorentz invariant Lagrangian description. In this paper we show how to construct a Lorentz-invariant S-matrix for the scattering of electrically and magnetically charged particles, without ever having to refer to a Dirac string. A key ingredient is a revision of our fundamental understanding of multi-particle representations of the Poincar\'e group. Surprisingly, the asymptotic states for electric-magnetic scattering transform with an additional little group phase, associated with pairs of electrically and magnetically charged particles. The corresponding "pairwise helicity" is identified with the quantized "cross product" of charges, $e_1 g_2 - e_2 g_1$, for every charge-monopole pair, and represents the extra angular momentum stored in the asymptotic electromagnetic field. We define a new kind of pairwise spinor-helicity variable, which serves as an additional building block for electric-magnetic scattering amplitudes. We then construct the most general 3-point S-matrix elements, as well as the full partial wave decomposition for the $2\to 2$ fermion-monopole S-matrix. In particular, we derive the famous helicity flip in the lowest partial wave as a simple consequence of a generalized spin-helicity selection rule, as well as the full angular dependence for the higher partial waves. Our construction provides a significant new achievement for the on-shell program, succeeding where the Lagrangian description has so far failed.