Tuesdays 10:30 - 11:30 | Fridays 11:30 - 12:30
Showing votes from 2017-11-24 12:30 to 2017-11-28 11:30 | Next meeting is Tuesday Aug 26th, 10:30 am.
Due to late time non-linearities, the location of the acoustic peak in the two-point galaxy correlation function is a redshift-dependent quantity, thus it cannot be simply employed as a cosmological standard ruler. This has motivated the recent proposal of a novel ruler, also located in the Baryon Acoustic Oscillation range of scales of the correlation function, dubbed the "linear point". Unlike the peak, it is insensitive at the $0.5\%$ level to many of the non-linear effects that distort the clustering correlation function and shift the peak. However, this is not enough to make the linear point a useful standard ruler. In addition, we require a model-independent method to estimate its value from real data, avoiding the need to deploy a poorly known non-linear model of the correlation function. In this manuscript, we precisely validate a procedure for model-independent estimation of the linear point. We also identify the optimal set-up to estimate the linear point from the correlation function using galaxy catalogs. The methodology developed here is of general validity, and can be applied to any galaxy correlation-function data. As a working example, we apply this procedure to the LOWZ and CMASS galaxy samples of the Twelfth Data Release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS), for which the estimates of cosmic distances using the linear point have been presented in Anselmi et al. (2017) [1].
Cosmic rays are an important tool to study dark matter annihilation in our Galaxy. Recently, a possible hint for dark matter annihilation was found in the antiproton spectrum measured by AMS-02, even though the result might be affected by theoretical uncertainties. A complementary way to test its dark matter interpretation would be the observation of low-energy antinuclei in cosmic rays. We determine the chances to observe antideuterons with GAPS and AMS-02, and the implications for the ongoing AMS-02 antihelium searches. We find that the corresponding antideuteron signal might be within the GAPS and AMS-02 detection potential. If, more conservatively, the putative signal was considered as an upper limit on DM annihilation, our results would indicate the highest possible fluxes for antideuterons and antihelium compatible with current antiproton data.