Tuesdays 10:30 - 11:30 | Fridays 11:30 - 12:30
Showing votes from 2017-09-05 11:30 to 2017-09-08 12:30 | Next meeting is Friday Sep 19th, 11:30 am.
For primordial black holes (PBH) to be the dark matter in single-field inflation, the slow-roll approximation must be violated by at least ${\cal O}(1)$ in order to enhance the curvature power spectrum within the required number of efolds between CMB scales and PBH mass scales. Power spectrum predictions which rely on the inflaton remaining on the slow-roll attractor can fail dramatically leading to qualitatively incorrect conclusions in models like an inflection potential and misestimate the mass scale in a running mass model. We show that an optimized temporal evaluation of the Hubble slow-roll parameters to second order remains a good description for a wide range of PBH formation models where up to a $10^7$ amplification of power occurs in $10$ efolds or more.
Exact solutions describing rotating black holes can offer important tests for alternative theories of gravity, motivated by the dark energy and dark matter problems. We present an analytic rotating black hole solution for a class of vector-tensor theories of modified gravity, valid for arbitrary values of the rotation parameter. The new configuration is characterised by parametrically large deviations from the Kerr-Newman geometry, controlled by non-minimal couplings between vectors and gravity. It has an oblate horizon in Boyer-Lindquist coordinates, and it can rotate more rapidly and have a larger ergosphere than black holes in General Relativity (GR) with the same asymptotic properties. We analytically investigate the features of the innermost stable circular orbits for massive objects on the equatorial plane, and show that stable orbits lie further away from the black hole horizon with respect to rotating black holes in GR. We also comment on possible applications of our findings for the extraction of rotational energy from the black hole.
In the Unruh effect an observer with constant acceleration perceives the quantum vacuum as thermal radiation. The Unruh effect has been believed to be a pure quantum phenomenon, but here we show theoretically how the effect arises from the classical correlation of noise. We demonstrate this idea with a simple experiment on water waves where we see the first indications of a Planck spectrum in the correlation energy.