Tuesdays 10:30 - 11:30 | Fridays 11:30 - 12:30
Showing votes from 2016-06-14 11:30 to 2016-06-17 12:30 | Next meeting is Tuesday Aug 12th, 10:30 am.
The cosmic microwave background (CMB) is one of the finest probes of cosmology. Its all-sky temperature and linear polarization (LP) fluctuations have been measured precisely at a level of deltaT/TCMB ~10^{-6}. In comparison, circular polarization (CP) of the CMB, however, has not been precisely explored. Current upper limit on the CP of the CMB is at a level of deltaV/TCMB ~10^{-4} and is limited on large scales. Some of the cosmologically important sources which can induce a CP in the CMB include early universe symmetry breaking, primordial magnetic field, galaxy clusters and Pop III stars (also known as the First stars). Among these sources, Pop III stars are expected to induce the strongest signal with levels strongly dependent on the frequency of observation and on the number, Np, of the Pop III stars per halo. Optimistically, a CP signal in the CMB due to the Pop III stars could be at a level of deltaV/TCMB ~ 2x10^{-7} in scales of 1 degree at 10 GHz, which is much smaller than the currently existing upper limits on the CP measurements. Primary foregrounds in the cosmological CP detection will come from the galactic synchrotron emission (GSE), which is naturally (intrinsically) circularly polarized. We use data-driven models of the galactic magnetic field (GMF), thermal electron density and relativistic electron density to simulate all-sky maps of the galactic CP in different frequencies. This work also points out that the galactic CP levels are important below 50 GHz and is an important factor for telescopes aiming to detect primordial B-modes using CP as a systematics rejection channel. Final results on detectability are summarized in Fig (11-13).
Generic black-hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick velocity to the merger remnant. If a component of the kick along the line-of-sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler-shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational-wave experiments will be able to perform direct measurements, not only of the black-hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black-hole kick velocities as low as ~500 km/s, which are expected to be a common outcome of black-hole binary coalescence following galaxy mergers. Black-hole kicks thus constitute a promising new observable in the growing field of gravitational-wave astronomy.
Probing correlations among short and long-wavelength cosmological fluctuations is known to be decisive for deepening the current understanding of inflation at the microphysical level. Spectral distortions of the CMB can be caused by dissipation of cosmological perturbations when they re-enter Hubble after inflation. Correlating spectral distortions with temperature anisotropies will thus provide the opportunity to greatly enlarge the range of scales over which squeezed limits can be tested, opening up a new window on inflation complementing the ones currently probed with CMB and LSS. In this paper we discuss a variety of inflationary mechanisms that can be efficiently constrained with distortion-temperature correlations. For some of these realizations (representative of large classes of models) we derive quantitative predictions for the squeezed limit bispectra, finding that their amplitudes are above the sensitivity limits of an experiment such as the proposed PIXIE.