Tuesdays 10:30 - 11:30 | Fridays 11:30 - 12:30
Showing votes from 2016-05-24 11:30 to 2016-05-27 12:30 | Next meeting is Tuesday Aug 19th, 10:30 am.
A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of $(\sigma_V/H)_0 < 4.7 \times 10^{-11}$ (95% CI), which is an order of magnitude tighter than previous Planck results that used CMB temperature only. We also place upper limits on other modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, $(\sigma_{T,\rm reg}/H)_0<1.0 \times 10^{-6}$ (95% CI). Including all degrees of freedom simultaneously for the first time, anisotropic expansion of the Universe is strongly disfavoured, with odds of 121,000:1 against.
We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two of these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.