Tuesdays 10:30 - 11:30 | Fridays 11:30 - 12:30
Showing votes from 2016-05-17 11:30 to 2016-05-20 12:30 | Next meeting is Tuesday Aug 19th, 10:30 am.
Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.
Strong gravitational lensing provides a geometric probe of cosmology in a unique manner through distance ratios involving the source and lens. This is well known for the time delay distance derived from measured delays between lightcurves of the images of variable sources such as quasars. Recently, double source plane lens systems involving two constant sources lensed by the same foreground lens have been proposed as another probe, involving a different ratio of distances measured from the image positions and fairly insensitive to the lens modeling. Here we demonstrate that these two different sets of strong lensing distance ratios have strong complementarity in cosmological leverage. Unlike other probes, the double source distance ratio is actually more sensitive to the dark energy equation of state parameters $w_0$ and $w_a$ than to the matter density $\Omega_m$, for low redshift lenses. Adding double source distance ratio measurements can improve the dark energy figure of merit by 40% for a sample of fewer than 100 low redshift systems, or even better for the optimal redshift distribution we derive.
We revisit the compatibility between the chaotic inflation, which provides a natural solution to the initial condition problem, and the metastable electroweak vacuum, which is suggested by the results of LHC and the current mass measurements of top quark and Higgs boson. It is known that the chaotic inflation poses a threat to the stability of the electroweak vacuum because it easily generates large Higgs fluctuations during inflation or preheating and triggers the catastrophic vacuum decay. In this paper, we propose a simple cosmological solution in which the vacuum is stabilized during chaotic inflation, preheating and after that. This simple solution naturally predicts formation of primordial black holes. We find interesting parameter regions where the present dark matter density is provided by them. Also, the thermal leptogensis can be accommodated in our scenario.
We study the spherical evolution model for voids in $\Lambda$CDM, where the evolution of voids is governed by dark energy at an earlier time than that for the whole universe or in overdensities. We show that the presence of dark energy suppresses the growth of peculiar velocities, causing void shell-crossing to occur at progressively later epochs as $\Omega_{\Lambda}$ increases. We apply the spherical model to evolve the initial conditions of N-body simulated voids and compare the resulting final void profiles. We find that the model is successful in tracking the evolution of voids with radii greater than $30 h^{-1} \rm Mpc$, implying that void profiles could be used to constrain dark energy. We find that the initial peculiar velocities of voids play a significant role in shaping their evolution. Excluding the peculiar velocity in the evolution model delays the time of shell crossing.