Tuesdays 10:30 - 11:30 | Fridays 11:30 - 12:30
Showing votes from 2016-05-13 12:30 to 2016-05-17 11:30 | Next meeting is Tuesday Aug 19th, 10:30 am.
The most recent measurements of the temperature and low-multipole polarization anisotropies of the Cosmic Microwave Background (CMB) from the Planck satellite, when combined with galaxy clustering data from the Baryon Oscillation Spectroscopic Survey (BOSS) in the form of the full shape of the power spectrum, and with Baryon Acoustic Oscillation measurements, provide a $95\%$ confidence level (CL) upper bound on the sum of the three active neutrinos $\sum m _\nu< 0.183$ eV, among the tightest neutrino mass bounds in the literature, to date, when the same datasets are taken into account. This very same data combination is able to set, at $\sim70\%$ CL, an upper limit on $\sum m _\nu$ of $0.0968$ eV, a value that approximately corresponds to the minimal mass expected in the inverted neutrino mass hierarchy scenario. If high-multipole polarization data from Planck is also considered, the $95\%$ CL upper bound is tightened to $\sum m _\nu< 0.176$ eV. Further improvements are obtained by considering recent measurements of the Hubble parameter. These limits are obtained assuming a specific non-degenerate neutrino mass spectrum; they slightly worsen when considering other degenerate neutrino mass schemes. Current cosmological data, therefore, start to be mildly sensitive to the neutrino mass ordering. Low-redshift quantities, such as the Hubble constant or the reionization optical depth, play a very important role when setting the neutrino mass constraints. We also comment on the eventual shifts in the cosmological bounds on $\sum m_\nu$ when possible variations in the former two quantities are addressed.
We analyze the event GW 150914 announced by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) as the gravitational-wave emission of a black-hole binary merger. We show that the parameters of the coalescing system and of the newly formed Kerr black-hole can be extracted from basic results of the gravitational-wave emission during the inspiraling and merger phases without sophisticated numerical simulations. Our strikingly accurate estimates are based on textbook formulas describing two different regimes: 1) the binary inspiraling analysis treated in Landau and Lifshitz textbook, and 2) the plunge of a particle into a black-hole, treated in the Rees-Ruffini-Wheeler textbook. It is stressed that in order to infer any astrophysical information on the masses of the system both regimes have to be independently and observationally constrained by LIGO, which does not appear to be the case.
If the initial quantum state of the primordial perturbations broke rotational invariance, that would be seen as a statistical anisotropy in the angular correlations of the cosmic microwave background radiation (CMBR) temperature fluctuations. This can be described by a general parameterisation of the initial conditions that takes into account the possible direction-dependence of both the amplitude and the phase of particle creation during inflation. The leading effect in the CMBR two-point function is typically a quadrupole modulation, whose coefficient is analytically constrained here to be $|B| \lesssim 0.06$. The CMBR three-point function then acquires enhanced non-gaussianity, especially for the local configurations. In the large occupation number limit, a distinctive prediction is a modulation of the non-gaussianity around a mean value depending on the angle that short and long wavelength modes make with the preferred direction. The maximal variations with respect to the mean value occur for the configurations which are coplanar with the preferred direction and the amplitude of the non-gaussianity increases (decreases) for the short wavelength modes aligned with (perpendicular to) the preferred direction. For a high scale model of inflation with maximally pumped up isotropic occupation and $\epsilon\simeq 0.01$ the difference between these two configurations is about $0.27$, which could be detectable in the future. For purely anisotropic particle creation, the non-Gaussianity can be larger and its anisotropic feature very sharp. The non-gaussianity can then reach $f_{NL} \sim 30$ in the preferred direction while disappearing from the correlations in the orthogonal plane.